# A Level Statistics AQA Past Exam Questions

# **TOPIC: The Exponential Distribution**

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have retrievable mathematical formulae stored in them.

#### Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions on paper
- · You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise stated, statistical tests should be carried out at the 5% significance level.
- When a calculator is used, the answer should be given to three significant figures unless otherwise stated.

#### Information

- You may use the booklet 'Statistical Formulae and Tables'
- There are 10 questions in this question paper. The total mark for this paper is 98
- The marks for **each** question are shown in brackets use this as a guide as to how much time to spend on each question.

#### Advice

- · Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- · If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- · Check your answers if you have time at the end.

#### **AQA\_JUNE\_2012\_3**

|         | Total                                                                                                  |                | 11 |                                                                         |
|---------|--------------------------------------------------------------------------------------------------------|----------------|----|-------------------------------------------------------------------------|
| (c)     | number of times per year which<br>Imran wears a suit is Poisson<br>mean $1.64 + 1.72 = 3.36$           | B1<br>B1       | 2  | B1 Poisson, mean 1.72 + their (b)<br>B1 3.36 (3.36~3.37)                |
| (b)     | $mean = 365 \times 0.0045 \\ = 1.64$                                                                   | M1<br>A1       | 2  | M1 method<br>A1 1.64 (1.64~1.65)                                        |
| (iii)   | probability will not wear suit for a<br>year = $e^{-365 \times 0.0045}$<br>= $e^{-1.6425}$<br>= 0.193  | M1<br>A1       | 2  | M1 method - allow wrong tail A1 0.193 (0.193~0.194)                     |
| (ii)    | probability will wear the suit in next<br>100  days<br>= 1 - e <sup>-0.45</sup><br>= 1 - 0.638 = 0.362 | M1<br>m1<br>A1 | 3  | M1 100×0.0045<br>m1 method - allow wrong tail<br>A1 0.362 (0.362~0.363) |
| 3(a)(i) | mean = $1/0.0045$<br>= 222.2                                                                           | M1<br>A1       | 2  | M1 method<br>A1 222 (222~222.4)                                         |

#### **AQA JUNE 2013 5**

| WH_     | _JUNE2013_5                                                                    |          |       |                                                                                                                 |
|---------|--------------------------------------------------------------------------------|----------|-------|-----------------------------------------------------------------------------------------------------------------|
| Q       | Solution                                                                       | Marks    | Total | Comments                                                                                                        |
| 5(a)(i) | $P(1 \le X \le 7) = \frac{7-1}{8} = 0.75$                                      | M1<br>A1 | 2     | M1: using correct rectangular distribution,<br>allow slip eg 7/8 or 5/8                                         |
| (ii)    | Mean = 4 mins                                                                  | В1       |       |                                                                                                                 |
|         | Standard deviation = $\sqrt{\frac{(8-0)^2}{12}}$ = 2.31                        | M1A1     | 3     | A1 awfw $2.30 \sim 2.31$<br>s.c B1 for $\frac{64}{12}$                                                          |
| (iii)   | Under this model it is impossible for a consultation to last longer than 8mins | В1       | 1     |                                                                                                                 |
| (b)(i)  | F(7) – F(1) =                                                                  | M1       |       | M1: sight of $1 - e^{-\frac{7}{4}}$ or $1 - e^{-\frac{1}{4}}$ or $1 - 0.1738 = 0.8262$ or $1 - 0.7788 = 0.2212$ |
|         | $\left(1 - e^{\frac{-7}{4}}\right) - \left(1 - e^{\frac{-1}{4}}\right)$        | m1       |       | m1: subtracting their F(7) – their F(1)                                                                         |
|         | = 0.605                                                                        | A1       | 3     | awfw 0.60 ~ 0.61                                                                                                |
| (ii)    | P(X=8)=0                                                                       | В1       | 1     |                                                                                                                 |
| (iii)   | $P(X \ge 8) = 1 - F(8) = 1 - \left(1 - e^{\frac{-8}{4}}\right)$                | M1       |       |                                                                                                                 |
|         | = 0.135                                                                        | A1       | 2     | awfw 0.135 ~ 0.136                                                                                              |
| (iv)    | $P(X \ge 10 / X \ge 8) = P(X \ge 2)$                                           | M1       |       | Using "no memory" property                                                                                      |
|         | = 1 - F(2)                                                                     | M1       |       |                                                                                                                 |
|         | = 0.61                                                                         | A1       | 3     | A1 awfw 0.60 ~ 0.61 accept e <sup>-0.5</sup>                                                                    |
|         | or                                                                             |          |       |                                                                                                                 |
|         | $P(X \ge 10 / X \ge 8) = \frac{P(X \ge 10)}{P(X \ge 8)}$                       |          |       |                                                                                                                 |
|         | $=\frac{e^{\left(\frac{-10}{4}\right)}}{\left(\frac{-8}{4}\right)}$            | (M1)     |       | M1 Numerator and dividing                                                                                       |
|         | $=\frac{e^{\left(\frac{-8}{4}\right)}}{e^{\left(\frac{-8}{4}\right)}}$         | (M1)     |       | M1 denominator                                                                                                  |
|         | = 0.61                                                                         | (A1)     | (3)   | A1 awrt 0.60 ~ 0.61 accept e <sup>-0.5</sup>                                                                    |
|         |                                                                                |          |       | NB: must use correct probability distribution in all parts above                                                |

| Q    | Solution                                                                                                                                                                                                                                                          | Marks | Total | Comments                                                                                                                                                                                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(c) | Under new system<br>13.5% of appointments would overrun<br>and of these approx 61% would take<br>longer than 10 minutes.                                                                                                                                          | B2    |       | B1 for each distinct correct numerical<br>comment on probabilities using the<br>exponential model to a maximum of 2.                                                                                                                                                                                                                                                                    |
|      | Reduction in appointment time is likely to make patients wait – doctors' wishes are supported.  Note: the use of expressions such as "likely" or "most" must be supported by a numerical probability.  scE1 for answers unsupported by correct numerical evidence | EI    | 3     | E1 A single conclusion supported by numerical comments dependent on at least one B1.  Alternatives: Approx. 60% of consultations last between 1 and 7 minutes and only 13.5% take longer than 8 minutes. Health centre's suggestion is reasonable; Margaret's wishes are supported.  or unlikely almost 22% of all appointments last less than 1 minute poor model—more research needed |
|      | Total                                                                                                                                                                                                                                                             |       | 18    |                                                                                                                                                                                                                                                                                                                                                                                         |
|      | TOTAL                                                                                                                                                                                                                                                             |       | 75    |                                                                                                                                                                                                                                                                                                                                                                                         |

#### **AQA\_JUNE\_2016\_5**

| / (Q/ (_OO. | 1                                                                                     | -     |   |                                                                                                  |
|-------------|---------------------------------------------------------------------------------------|-------|---|--------------------------------------------------------------------------------------------------|
| 5a          | Mean = $\frac{1}{\lambda}$ = 40; variance = $\left(\frac{1}{\lambda}\right)^2$ = 1600 | B1,B1 | 2 | Cao both                                                                                         |
| 5b(i)       | $P(T > 30) = e^{-0.025 \times 30}$                                                    | M1    |   | or 1 - $(1 - e^{-0.025 \times 30}) = 1 - 0.528$                                                  |
|             | = 0.4724                                                                              | A1    |   | awfw 0.472 ~ 0.473 (0.472366)                                                                    |
| b(ii)       | On 2 occasions : prob = $0.4724^2$                                                    |       |   |                                                                                                  |
|             | = 0.2231                                                                              | B1ft  | 3 | awrt $0.223 \sim 0.224$ : f.t. on their b (i)                                                    |
| (c)         | $P(\bar{T} > 35) = P(Z > \frac{35 - 40}{\sqrt{\frac{1600}{75}}})$                     | M1    |   | Standardising with 35 and 40; condone $\sqrt{40}$ or $\frac{1600}{75}$ as denominator.           |
|             |                                                                                       | B1    |   | $\sigma = \sqrt{\frac{1600}{75}} \text{ or } \sigma^2 = \frac{1600}{75} \text{ seen or implied}$ |
|             | = P(Z > -1.08)                                                                        | Al    |   | by correct probability.<br>[awrt 4.62 ( 4.6188 )]                                                |
|             |                                                                                       | 4.1   |   | awfw $-1.08 \sim -1.09$                                                                          |
|             | = 0.860                                                                               | A1    |   |                                                                                                  |
|             |                                                                                       |       |   | 0.859 ~ 0.863 ( 0.86049)                                                                         |
|             |                                                                                       |       | 4 | NMS 4/4 for a probability in correct range.                                                      |
|             | Total                                                                                 |       | 9 |                                                                                                  |
|             |                                                                                       |       |   |                                                                                                  |

## **AQA\_JUNE\_2018\_2**

| _          | <del>-</del> -                                                                                         | I            | ı | i i                                                                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------------------------|--------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)<br>(i) | $\mu = \frac{1}{\lambda} = \frac{1}{0.36} = 2.78$                                                      | B1           | 1 | Or 2.77                                                                                                                                                                                     |
| (ii)       | $1 - e^{-0.36 \times 3}$                                                                               | M1           |   | PI Correct use of formula                                                                                                                                                                   |
|            | = 0.660 or 0.66                                                                                        | A1           | 2 | AWRT (0.6604044744)                                                                                                                                                                         |
| (b)        | ( <i>Use</i> of memoryless property) $x = 2$<br>$1 - (1 - e^{-0.36 \times 2})$ or $e^{-0.36 \times 2}$ | M1           |   | Not using both $1 - e^{-0.36 \times 2} = 0.513$<br>x = 2 and $x = 5$                                                                                                                        |
|            |                                                                                                        |              |   | Allow correct use of conditional probability with $x = 5$ and $x = 7$ .                                                                                                                     |
|            | = 0.487 or 0.486                                                                                       | A1           | 2 | AWRT (0.486752256)                                                                                                                                                                          |
| (c)        | Either The locations of platypus burrows might not be independent (of each other).  or                 | B1<br>E1     | 2 | PI not independent or equivalent random clear and correct context (Might be stated as "platypus burrows may be grouped together" or "platypus burrows might be at a fixed distance apart".) |
|            | Platypus burrows might not occur at a constant average rate/interval along the river                   | (B1)<br>(E1) |   | "platypuses live in colonies"  not constant average rate/interval clear and correct context  For E1 must have mentioned burrows/homes not just platypuses                                   |
|            | Total                                                                                                  |              | 7 |                                                                                                                                                                                             |

#### **AQA\_JUNE\_2017\_3**

|         | Total                                                                                                                   |       | 10 |                                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------|-------|----|--------------------------------------------------------------------------------------------------------------------------|
|         | Alt: $365 \times 24 \times 15 = 131400$ <b>M1</b> ; P(T>131.4) = $e^{-0.0125 \times 131.4}$ <b>m1</b> = 0.193 <b>A1</b> |       |    |                                                                                                                          |
|         | = 0.193                                                                                                                 | A1    | 3  | 0.193 ~ 0.194 (0.1934886)                                                                                                |
|         | eg $e^{-0.0125 \times 8.76 \times 15}$                                                                                  |       |    | m1 raising their probability to the power of 15.                                                                         |
|         |                                                                                                                         | M1,m1 |    | $1000 \text{ and using } e^{-0.0125t}$                                                                                   |
|         | $= \left(e^{-\frac{8.76}{80}}\right)^{15} = (0.89628)^{15} \text{ o.e.}$                                                |       |    | M1;dividing their calculated hours by                                                                                    |
|         | P( all bulbs last longer than 8760 hours)                                                                               |       |    |                                                                                                                          |
| 3(c)    | $365 \text{ days} = 365 \times 24 \text{ hours} = 8760$                                                                 |       | 5  |                                                                                                                          |
|         | = 0.3820 = 0.13333                                                                                                      | A1    |    | $0.38 \sim 0.39 \; (\; 0.38190)$                                                                                         |
|         | $= e^{-0.625} - e^{-1.875}$<br>= 0.53526 - 0.15335                                                                      |       |    | or 0.84665 – 0.46474                                                                                                     |
|         |                                                                                                                         |       |    | slip.                                                                                                                    |
|         | $=\left(1-e^{-rac{150}{80}} ight)-\left(1-e^{-rac{50}{80}} ight)$                                                     | M1    |    | Subtracting two valid cumulative probabilities o.e.; ft their $\lambda$ ; must be using $T=150$ and $T=50$ ; allow small |
| ()      | 1(100)                                                                                                                  |       |    | Subtraction to a subtraction                                                                                             |
| (ii)    | P(50 < T < 150) = P(T < 150) - P(T < 50)                                                                                |       |    |                                                                                                                          |
|         | = 0./13                                                                                                                 | A1    |    | 0.71~ 0.72 (0.713495)                                                                                                    |
|         | $= (1 - e^{-1.25})$ $= 0.713$                                                                                           | M1    |    | Use of $F(t) = 1 - e^{-0.0125t}$ with their T                                                                            |
| 3(b)(i) | $P(T < 100) = \left(1 - e^{-\frac{100}{80}}\right)$                                                                     | В1    | _  | Using T = 100                                                                                                            |
|         |                                                                                                                         |       | 2  | shown.                                                                                                                   |
|         | Mean lifetime is 80 000 hours                                                                                           | A1    |    | cao<br>s.c. B1 for 80 with no other working                                                                              |
|         | = 80                                                                                                                    | M1    |    | 0.0125                                                                                                                   |
| 3(a)    | $Mean = \frac{1}{\lambda} = \frac{1}{0.0125}$                                                                           |       |    |                                                                                                                          |

#### **AQA\_JUNE\_2007\_4**

| ,,,,,_,,,,, |                                                                                                         |          |   |                                  |
|-------------|---------------------------------------------------------------------------------------------------------|----------|---|----------------------------------|
| 4(a)(i)     | $P(X < 2) = 1 - e^{-0.4 \times 2}$ $= 1 - e^{-0.8} = 0.551$                                             | M1<br>A1 | 2 | or by integration AWRT           |
| (ii)        | $P(2 \le X \le 5) = F(5) - F(2)$<br>= $(1 - e^{-2}) - (1 - e^{-0.8})$                                   | M1       |   | or by integration                |
|             | = 0.314                                                                                                 | A1       | 2 | AWRT                             |
| (b)         | for median $m$ , $F(m) = 0.5 (= 1 - F(m))$<br>$F(1.7) = 1 - e^{-0.68} = 0.493$<br>$(e^{-0.68} = 0.507)$ | B1<br>B1 |   | may be implied                   |
|             | $F(1.8) = 1 - e^{-0.72} = 0.513$ $(e^{-0.72} = 0.487)$                                                  | B1       |   |                                  |
|             | 0.5 lies between 0.493 and 0.513 so<br>median lies between 1.7 and 1.8                                  | E1       | 4 |                                  |
|             | or                                                                                                      |          |   |                                  |
|             | $e^{-0.4m} = 0.5$                                                                                       | (M1)     |   | equation of correct form         |
|             | $-0.4m = \ln(0.5)$                                                                                      | (m1)     |   | attempt to solve using logs      |
|             | $m = \frac{0.693}{0.4} = 1.73$                                                                          | (A1)     |   |                                  |
|             | so median lies between 1.7 and 1.8                                                                      | (E1)     |   | solution used to answer question |
|             | Total                                                                                                   |          | 8 |                                  |

#### **AQA JUNE 2008 4**

| ()         | Total                                                            |    | 13    | V (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|------------------------------------------------------------------|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)       | From tables (or otherwise) 0.449                                 | B1 | 1     | 0.449 (0.449 ~ 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | hours is $\frac{40}{50} = 0.8$                                   | A1 | 2     | 0.8 CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                  |    | 836.0 | A CONTROL OF THE PARTY OF THE P |
|            | Mean number of drill bits which fail in 40                       | M1 |       | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (e)(i)     | Mean time between failures is 50 hours.                          |    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 490 200    | distribution has no memory.                                      | El | 2     | exponential distribution has no memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (d)        | Makes no difference - exponential                                | E1 | 880   | no difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | (or $0.8521437^5 = 0.449$ )                                      |    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Probability not failing = 0.449                                  | A1 | 3     | 0.449 (0.449 ~ 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                  | m1 | 2     | correct method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | = 0.551                                                          |    |       | hours ) <sup>5</sup> . Allow fail/not fail errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (c)        | Probability not fail during 40 hours $1 - e^{-0.8} = 1 - 0.4493$ | M1 |       | attempt to find probability not failing during 40 hours or ( their prob not fail in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | = 0.148                                                          | A1 | 3     | 0.148 (0.1475 ~ 0.1485)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | =1-0.8521437                                                     | M1 |       | correct method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>(b)</b> | $1 - e^{-8 \times 0.02} = 1 - e^{-0.16}$                         | B1 |       | attempt to use $e^{-8 \times 0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 0.02                                                             | A1 | 2     | 50 CAO - ignore units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4(a)       | mean $\frac{1}{2.02}$ = 50 hours                                 | M1 |       | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**AQA\_JUNE\_2009\_1** 

|      | , =                                      |            |   |                                                                         |
|------|------------------------------------------|------------|---|-------------------------------------------------------------------------|
| 1(a) | mean $1/0.05 = 20$<br>s.d. $1/0.05 = 20$ | M1         |   | Method for both                                                         |
|      |                                          | <b>A</b> 1 | 2 | 20 both, CAO                                                            |
| (b)  | $1 - e^{-0.05 \times 20}$                | B1         |   | 0.05 × 20                                                               |
|      | $= 1 - e^{-1}$                           | M1         |   | Method - allow wrong tail                                               |
|      | = 0.632                                  | A1         | 3 | 0.6315 ~ 0.6325                                                         |
|      | $e^{-0.05 \times 10}$                    | M1         |   | Attempt to find > or < 10 from exponential parameter 0.05 or equivalent |
|      | $= e^{-0.5}$                             | m1         |   | Method - allow wrong tail                                               |
|      | = 0.607                                  | A1         | 3 | 0.606 ~ 0.607                                                           |
|      | Total                                    |            | 8 |                                                                         |

## **AQA\_JUNE\_2010\_1**

| 1(a)   | $\lambda = 1/\text{mean} = 1/0.8$       | E1   | 1 | E1 1/0.8 ag                               |
|--------|-----------------------------------------|------|---|-------------------------------------------|
|        | = 1.25                                  |      |   |                                           |
|        |                                         |      |   |                                           |
| (b)    | $P(X < 0.5) = 1 - e^{-1.25 \times 0.5}$ | B1   |   | B1 1.25 × 0.5                             |
| (-)    | $= 1 - e^{-0.625} = 1 - 0.535$          | M1A1 |   | M1 method – allow wrong tail              |
|        | = 0.465                                 |      | 3 | A1 0.465 ( 0.464 ~ 0.466 )                |
|        |                                         |      |   | (3133)                                    |
| (c)(i) | $P(X > 0.7) = e^{-1.25 \times 0.7}$     | M1   |   | M1 attempt to find > 0.7 from exponential |
| (0)(1) | $= e^{-0.875}$                          | ml   |   | parameter 1.25                            |
|        | = 0.417                                 | A1   | 3 | m1 method – allow wrong tail              |
|        | - 0.417                                 | AI   | 3 |                                           |
|        |                                         |      |   | A1 0.417 (0.416 ~ 0.418)                  |
| (**)   | D/ W a L AL Way O. 7.)                  |      |   |                                           |
| (ii)   | P(X < 1.4   X > 0.7)                    |      |   |                                           |
|        | = P(X < 0.7)                            |      |   |                                           |
|        | = 1 - 0.417 = 0.583                     | M1   |   | M1 1 – their (c)(i)                       |
|        |                                         | A1   | 2 | A1 0.583 (0.582 ~ 0.584)                  |
|        | Total                                   |      | 9 |                                           |
|        |                                         |      |   |                                           |

# AQA\_JUNE\_2011\_4

| 4(a) | mean $\frac{1}{0.22} = 4.55$                                        | M1             |   | for both                                                                                        |
|------|---------------------------------------------------------------------|----------------|---|-------------------------------------------------------------------------------------------------|
|      | $sd \frac{1}{0.22} = 4.55$                                          | A1             | 2 | 4.55 (4.54 ~ 4.55) for both                                                                     |
| (b)  | $e^{-0.22 \times 5}$ $= e^{-1.1}$ $= 0.333$                         | B1<br>M1<br>A1 | 3 | 0.22 × 5<br>allow wrong tail<br>0.333 (0.332 ~ 0.333)                                           |
| (c)  | $1 - e^{-0.22 \times 3}$ $= 1 - e^{-0.66}$ $= 1 - 0.5168$ $= 0.483$ | M1<br>m1<br>A1 |   | attempt to find > or < 3 from exponential parameter 0.22 allow wrong tail 0.483 (0.483 ~ 0.484) |
|      |                                                                     |                |   |                                                                                                 |